
WiFröst: Bridging the Information Gap for Debugging of
Networked Embedded Systems

Will McGrath1,2, Jeremy Warner1, Mitchell Karchemsky1,
Andrew Head1, Daniel Drew1, Bjoern Hartmann1

1UC Berkeley EECS Department
{jwrnr,mkarch,andrewhead,

ddrew73,bjoern}@berkeley.edu

2Stanford University
Computer Science Department

wmcgrath@stanford.edu

Figure 1. Left: Debugging a networked embedded application with WiFröst: Developers connect their wireless device to an instrumented WiFi router;
data from the device and router is captured at microsecond-level resolution by a logic analyzer. Right: The WiFröst UI has 5 main panels: a code editor;
a console log; a visualization of the captured execution trace; a property inspector which displays contextually relevant information depending on active
UI element, like the duration of a line of code, or the parsed content of an HTTP response; and an issues list that automatically displays notifications
about system behavior irregularities or errors, e.g., errors returned in the response of a web API call, or loss of connection to the router.

ABSTRACT
The rise in prevalence of Internet of Things (IoT) technologies
has encouraged more people to prototype and build custom in-
ternet connected devices based on low power microcontrollers.
While well-developed tools exist for debugging network com-
munication for desktop and web applications, it can be difficult
for developers of networked embedded systems to figure out
why their network code is failing due to the limited output af-
fordances of embedded devices. This paper presents WiFröst,
a new approach for debugging these systems using instrumen-
tation that spans from the device itself, to its communication
API, to the wireless router and back-end server. WiFröst auto-
matically collects this data, displays it in a web-based visual-
ization, and highlights likely issues with an extensible suite of
checks based on analysis of recorded execution traces.

Author Keywords
Internet of Things; Debugging; Embedded Systems; IDE

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UIST ’18 October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5948-1/18/10.

DOI: https://doi.org/10.1145/3242587.3242668

INTRODUCTION
The rise of the Maker movement and associated prototyping
tools like the Arduino platform [30], together with the emer-
gence and popularization of the Internet of Things (IoT) has
led to a large base of people working on networked embed-
ded systems projects. Many such projects—from commercial
products to hobbyist devices—follow an MGC (embedded-
gateway-cloud) pattern [29, 11]: one or more embedded de-
vices communicate with a back-end service hosted remotely
on the internet through a gateway like a smartphone or home
WiFi router. Example devices include mobile payment termi-
nals, smart lights and speakers, and home weather monitors:
all involve embedded code, network connectivity, and infor-
mation received from a back-end server.

Wireless modules with associated software libraries as well as
IoT-focused APIs like Particle Cloud [33] and Adafruit IO [21]
have decreased the knowledge barrier for incorporation of con-
nectivity in an embedded systems project; nevertheless, there
is still a significant amount of difficulty associated with de-
velopment and debugging. For example, when developing a
device such as a WiFi-connected scale, developers have to
solve issues like establishing and maintaining local network
connectivity as the device is moved through the house and
sleeps/resumes to preserve battery life; dealing with poten-
tially unreliable connections between a local network and the

https://doi.org/10.1145/3242587.3242668


internet; and implementing and debugging API calls to a back-
end on a device with limited hardware resources and limited
debugging support. In other words, the concerns cross all
levels of the conceptual OSI model of networking [39] and are
exacerbated by the difficulties of embedded development.

Years of building and teaching students to build such systems
lead us to believe that this difficulty arises from a combination
of the following factors: 1) lack of visibility into measurements
of interest, and how they interrelate. Software-specific er-
rors, hardware signals, and network traffic are accessible only
by using separate tools (e.g., code IDE, multimeter, packet
capture) or not at all (e.g., “black-box” gateway devices and
wireless chips); 2) mixed time domains of interest, where im-
portant aspects of the system occur on different time-scales
between the relatively fast microprocessor execution speed,
relatively slow user input, and varying network traffic rate
and processing time; and finally, the 3) broad requisite knowl-
edge base, where users may face a large body of obstacles in-
cluding compiler-specific, hardware component-specific, and
networking-specific (e.g., HTTP or REST API) errors, each
with their own associated error codes.

Our hypothesis is that providing the information relevant
to understand the behavior of a networked embedded sys-
tem in a single linked environment can allow users to de-
bug more efficiently through holistic methods (e.g. pattern
recognition) and also help preemptively identify problem
areas in system behavior across domain boundaries. A key
technique is to combine information from different domains
(from code to network packets and server events) in a joint
visualization that allows users to traverse domain boundaries
as they seek to understand problems. A key insight is that in-
strumentation of the network gateway device provides a good
deal of both control flow information as well as specific error
information (e.g. through remote API call returns).

We introduce WiFröst, a debugging interface for networked
embedded systems. WiFröst operates on traces of embed-
ded device application, router, and server measurements that
can be collected and shown either in real-time or offline.
WiFröst focuses on the common pattern of devices commu-
nicating with HTTP REST interfaces. WiFröst specifically
addresses the needs of intermediate to expert programmers
seeking to develop and debug networked embedded systems
projects by:

• Providing a unified visualization and exploration environ-
ment for data from instrumentation of the entire system
stack (device, router, server), so that users who have a cor-
rect mental model of the desired behavior of their system
can quickly test hypotheses and evaluate failure modes
based on pattern recognition and situational context across
levels of application and communication infrastructure.
• Preemptively checking for common errors as well as pro-

viding in-situ explanations for error types at different levels
(e.g., WiFi connection errors, HTTP error codes, or API
usage errors) in order to decrease the knowledge required
for both localizing and interpreting bugs particularly for
less-experienced users.

• Revealing information at the communication interfaces
between domains such as device RSSI, which is typically
outside the scope of standard development tools.
• Letting developers explore traces both as logical events or

based on absolute timing.

In this paper, we first situate our contribution with respect to
related work, then introduce the user experience of working
with WiFröst, followed by our implementation strategy and a
discussion of limitations of our approach.

RELATED WORK
We first discuss studies of general debugging techniques and
end-user debugging patterns that informed the design of our
system, then cover tools for debugging specific aspects of
networked embedded systems.

General Debugging Techniques and Patterns
Studies of people during physical computing tasks [6, 31] and
formative interviews with domain experts [12] support the
hypothesis that one of the largest difficulties when debugging
an embedded systems project is correctly localizing the bugs.
Users often misdiagnose error sources across domains, for
example believing a problem originated from a software error
when it actually had to do with their physical circuit. Gugery
and Olson [16] show that novice programmers have difficulty
generating high-quality hypotheses about faults.

Several research tools introduce techniques to aid debugging:
DejaVu[22] and d.tools [19] include visualizations for in-
terpreting time-series sensor data. The Whyline [24, 25]
and Timelapse [7] enhance debugging by providing inter-
faces to examine and interrogate recorded program behav-
ior. Gneiss [9] helps users make more effective use of the
structured data provided by web APIs.

Implications for Design: Our system should preemptively
provide fault localization when possible and communicate
where to start looking for failure points by annotation or high-
lighting when automatic localization is impossible and support
flexible navigation through program traces.

Embedded Systems and Electronics Debugging
The concept of “always-on” visualizations has been shown to
improve debugging performance in code [26]. The Toast-
board [12] provides preemptive error checking of bread-
boarded circuits given a user-supplied virtual schematic to
compare measurements against. Bifröst [28] extends checking
across the domains of software and hardware by instrument-
ing both user code as well as the output pins of an embedded
system; it also provides an extensively linked visualization
environment. Scanalog [37] and Splish [23] both change the
physical computing workflow by providing a block diagram-
based environment for instrumentation and development.

Several tools allow developers to track resource usage in em-
bedded systems. The nesC language [15] includes provisions
for hardware resource aware error checking of user code at
compile time. Quanto [13] tracks energy usage of wireless
sensor motes (typically “invisible” information). It performs
accurate hardware measurements of power consumption and



ties them to programmer activity through an instrumentation
API spanning the hardware and software domains.

Implications for Design: The knowledge barrier for working
with embedded systems and electronics is decreased by com-
bining information from multiple domains into a single envi-
ronment. Cross-domain tools must take into account disparate
time scales of interest; there are also often domain-specific
resource constraints that should be conveyed to the user.
The Contribution of WiFröst: We will preemptively provide
root cause analysis for behavior errors that manifest across the
domains of embedded system software, network routing, and
server communication. Passive instrumentation of the user
device, router, and server will provide insight into previously
hidden barriers to successful operation of a networked system
(e.g. RSSI, CPU load) in a single development environment.

Network and Distributed System Debugging
The most relevant work concerns trace-based debugging of
networks and distributed systems.

The ndb network debugging tool [17] extends techniques from
software debugging (e.g. breakpoints, steps) to the realm of
software-defined networks. It uses passive instrumentation of
the network to reconstruct control flow, allowing users to trace
network errors back through the sequence of events leading
up to them. The NetSight platform (which uses ndb) [18]
supports aggregation and filtering of packet histories through
a network; they are explicitly grouped based on passively
generated “postcard” instrumentation. Whodunit [8] provides
a similar concept of “transaction flows,” where information is
tracked across access tiers (e.g., from client to server).

X-Trace [14] provides a network debugging tool that crosses
network layers and administrative boundaries. OFRewind [38]
implemented record-replay debugging of traces across network
layers with a focus on low-overhead instrumentation function-
ally separate from the data plane. Pinpoint [10] specifically
uses an instrumented middleware component to collect traffic
data and control flow traces to perform root cause analysis of
distributed systems problems.

Some systems include visualization methods for collected
control flow and behavioral data. Dapper [36] provides addi-
tional information about performance of distributed systems
using a low-level, transparent instrumentation scheme for low-
overhead trace collection and annotation. It includes a visu-
alization of call trees alongside annotated execution traces
containing information about timing. Pip [34] provides a lan-
guage for writing checks on system behavior across recorded
traces that decreases the amount of data a user has to parse to
localize invalid behaviors; it also includes a GUI for search
tree-based visualization of these checks. Spectroscope [35] is
a tool to evaluate distributed system request flows and com-
pare them over time; it explicitly looks for differences between
captured behaviors and displays annotated side-by-side visual-
izations for user review. Unravel [20] provides an interaction
visualization of behavior (i.e. changes between captured traces,
function calls) in the realm of web development. VEE [27]
built an interface for summarizing the communications be-
tween groups of physical devices. These projects make use of

the now common techniques of brushing and linking [4] and
multiple levels of zoom as in [5].

Implications for Design: Grouping information into trans-
actions/histories across levels allows for richer filtering and
evaluation of trace data. Instrumentation overhead on individ-
ual packets must be minimized for scalable implementations.
For visualization, stacked models and explicitly linked trans-
actions can show the user useful control flow information and
allow them to debug behavioral differences based on pattern
matching, without having to parse dense data.
The Contribution of WiFröst: We extend the concept of us-
ing transactional histories within recorded behavior traces for
debugging by including control flow within the software on
the embedded device. Our visualization is designed with an
emphasis on interaction instead of passive analysis.

A GATEWAY TO WIFRÖST
In this section we illustrate some of the uses of WiFröst using
a running example and refer to the layers of the conceptual
OSI model of networking [39] that are addressed in each step.

Wendy is a Maker; she is building a keycoded alarm for one
of her windows that can control her smart-lights wirelessly.
When Wendy is home, her house lights stay neutral white.
She can “arm” her alarm, which sets the lights to purple and
periodically checks a sensor to ensure that no one has broken
in. If the window is opened, her code moves into a triggered
state and changes the lights to orange. The intruder now has
30 seconds to input a keycode which is authenticated against a
remote key server. If the server returns a 200 OK message, the
user has a valid keycode and the alarm system is put back into
the “home” state. If they do not disable the system in time, it
moves to an alarm state with a flashing red light.

After drawing a schematic of the components (Fig. 2a), she
begins development. She can write, compile, and upload code
to the microcontroller from inside the WiFröst IDE (Fig. 2b).

The first failure Wendy faces is at the physical connection to
the network (OSI Layers 1 and 2). Wendy sets up her WiFi
device to connect to her router but uses incorrect credentials
to connect. WiFröst’s checkers alert Wendy that the router
rejected her requests because her password was incorrect. By
clicking the issue, Wendy zooms the timeline to the lines
of code and network events where this issue was detected
(Fig. 2d), and pulls up the relevant lines of code executed when
that issue was detected. Without WiFröst, her Arduino WiFi
library would only alert her that she was unable to connect
to the given network; the WiFröst instrumented router allows
Wendy to see specifically which part of the credentials were
incorrect—the password—as opposed to other errors (e.g., if
her router was not powered, she would receive the same error
on the microcontroller as having an incorrect password).

With the router connection established, the next step is to
establish a connection to a web application (OSI Layers 3 and
4). When Wendy writes a line of code to send an API call
to a server, she notices that although her request is sent, it is
not reaching the intended destination. The core Arduino WiFi
library would just tell Wendy that she was unable to connect
to the server; WiFröst removes ambiguity by showing that



a. Wendy is debugging a 
networked embedded application.

c. The Issues list indicates there 
could be a problem with a request.

d. When Wendy clicks an 
issue, the tool zooms to the 

buggy transaction.

e. The Property 
Inspector shows fine-
grained event data.

g. After fixing a bad 
API parameter, the 
application works!

b. WIFRÖST captures and visualizes the 
cross-device execution trace.

Arduino

Router

Window
w/ PIR Sensor

Philips 
Hues

Hue Hub

WiFi 
Board

f. And relevant lines of code 
are selected as she navigates 

the trace.

Figure 2. An example workflow of using WiFröst to debug an embedded networked application.

her message has reached the router but not server, displaying
a red health bar for internet connectivity between the two, and
warning Wendy in the Issues pane that her home network was
not connected to the internet at the time of the request.

With the internet connection re-established, Wendy attempts
to make an HTTP request to her application server (OSI Layer
7), only to encounter another error. Without WiFröst, the
WiFi library would still show the same error — that she is
unable to connect to the server. Instead, WiFröst’s library
instrumentation is able to see that the DNS lookup for her
URL failed, and WiFröst precisely localizes and highlights
the error via an automated check.

Finally able to send requests to the API over HTTP (OSI Layer
7), the device sends several requests before hitting yet another
issue. WiFröst alerts Wendy that an error was detected in
the response received from the web API—while the response
carried a 200 OK status code, WiFröst detected an error key
in the response with a non-null value (Fig. 2c). Wendy takes
a closer look at the error by clicking on the router response
event to load the response content into the property inspector
(Fig. 2e). Reading the response, the culprit is easy to see—
an invalid value was passed as an argument to the API. By
clicking on the response event, the IDE’s linked navigation has
already highlighted the line of code invoking the transaction
(Fig. 2f). Wendy traces the code back a few lines from the
request to the definition of the parameter, and fixes the value
to the range the API expects. Having inspected and fixed each
of these errors, Wendy’s embedded networked application is
now connected to the web and running as expected (Fig. 2g).

DEBUGGING WITH WIFRÖST
WiFröst’s instrumentation and visualization infrastructure pro-
vides both explicit localization of faults for the user and facili-
tates effective use of standard debugging techniques.

Holistic Debugging Assistance
By connecting visualizations of network events and the em-
bedded software execution in a single environment, we allow
users to differentiate and compare behavior of the entire sys-
tem based on context and visual patterns.

Visualizing Event and Transaction Context
WiFröst provides five simultaneous views of the same under-
lying trace: code, log output, event properties, an issues list,
and the cross-device control flow visualization. Each of these
is more than a static view: interactions with one view updates
the focus of all others based on the relevant transaction history
(Fig. 3). Despite a large amount of measured data presented in
our IDE, these interactive techniques for conveying event con-
text should decrease user cognitive load by guiding attention
within the interface.

Due to the disparate time scales (e.g. microsecond embedded
code versus millisecond server requests) involved in a net-
worked embedded system, many of the interesting events that
occur during an application trace—log messages, HTTP re-
sponses, logically important lines of code—are obscured when
the events are visualized proportionally to their execution time.
Trace recordings can often contain long empty spans where no
events occur and short bursts of activity where many events
overlap; this requires a user to zoom out to navigate between
clusters of events to gain context, but zoom in to understand
the actual contents of those clusters. To increase the legibility



Figure 3. This graph shows the interactive linking between interface
elements. For example, clicking on an output line in the serial log will
both highlight the line of user code that created that output line and
refocus the visualization to show the relevant transaction.

of the trace, the visualization includes a “logical” time scale
where all events are given roughly the same height and empty
time spans are eliminated; the trace is then reported in terms
of chronological steps instead of absolute time (Fig. 4).

At-A-Glance Health Indications
Sometimes, failure of a networked embedded system is due to
externalities either outside of direct user control or outside the
scope of a user’s ordinary monitoring capabilities. WiFröst dis-
plays various domain boundary and resource conditions, like
RSSI, ping, and embedded device RAM usage, alongside the
measured trace (Fig. 5). These values are updated continu-
ously during trace recording to reflect their dynamic nature.

This information can both help prevent error misdiagnoses
(e.g. if a failure to receive information from the server is due
to a lost internet connection instead of coding error) and help
explain behavioral differences between different traces (e.g.
low RSSI during one interaction, but not another, affecting
system response time).

Transaction Grouping for Pattern Recognition
Behavior of a networked embedded system can be expected
to follow either one-way (e.g. an HTTP POST with no re-
quired response) or bi-directional set patterns. By grouping
information into transactions across the domains of the device
code and network activity, we can draw explicit connections
between related events; users can then use these connections
as tools for diagnosing incorrect behavior based on expected
visual pattern (Fig. 6).

Pre-emptive Fault Localization
WiFröst helps users locate the causes of unexpected behavior
by detecting and flagging unexpected behaviors from the trace

Figure 4. WiFröst makes it possible for users to switch between visual-
ization in actual time for overall context and a discretized “logical” time
to view detailed program behavior through buttons in the interface.

Figure 5. “Health” conditions are monitored periodically (e.g. device
RAM), with the value then mapped to a color range and displayed along-
side the relevant events. Domain boundary and resource conditions are
displayed in their logical locations between the relevant domains.

Figure 6. Visual comparison of traces containing both expected and un-
expected behavior can yield insight into where the transaction broke
down. Here, we can quickly see that although the HTTP request re-
sponse made it back to the router, it did not get to the device. Closer
inspection shows that in the incorrect behavior trace the user has forgot-
ten to read from the receive buffer; the call to that function is missing in
the embedded software stack visualization.

logs and offering concrete tips on how to fix these behaviors.
Every time a new event is queued in the event stream, WiFröst
re-runs a suite of error checkers on the history of events; see
Fig. 7 for a list of the currently implemented checkers. Er-
rors are often localized to a single event. For example, one
checker reports an error whenever it observes a server response
containing a 401 code. Other checkers inspect sequences of
events across devices; to detect an incorrect WiFi network
password, one checker searches for failure codes returned by
the WiFi library, followed by a router health record where a
connection is unauthorized. Some checks detect rising edges;
this is especially important for health checks, where the data is
collected periodically, but only a subset of those events should

Figure 7. WiFröst monitors the data collected from the device, WiFi API,
router, and server to detect common errors. This plot shows the checkers
implemented in WiFröst, and the data streams that are monitored.



Figure 8. A web API call contains multiple parts. Through the instru-
mentation of the router WiFröst can not only identify that an API call is
an error source in the system but also identify the specific part of the call
that has caused the problem; for example, an incorrect address versus a
set parameter not found or outside an allowable range.

Device Router Server
Instrumented 

Code

DatabaseWorkstation

Logic Analyzer

Microsecond resolution Millisecond resolution

Line times, requests, 
device health

Packet IDs, 
router health, 
RSSI, ...

Packet 
contents

Server 
health

Figure 9. Dataflow through the WiFröst network components. Logs
are collected from instrumented code, device, router, and server. The
method of data collection varies by the time resolution required to pre-
serve causation between events from neighboring components.

be flagged as “errors”. For example, one checker for flagging
weak connections between the device and router will only
report an error when the RSSI falls below a threshold.

Calls to remote APIs can fail for a variety of reasons (Fig. 8),
but visibility into these reasons is limited for a typical devel-
oper of an embedded device. The WiFröst instrumentation of
the core WiFi library lets us parse and display relevant packet
information as it passes through the instrumented router, giv-
ing visibility into why and when the API call failed.

IMPLEMENTATION
WiFröst relies on software and hardware instrumentation to
capture a program’s trace across the network stack, and a
data pipeline to clean, align, and display this information. In
this section, we describe the high-level design of the system
(Figure 9), and the technical insights that allowed us to collect
and display information for networked application debugging.

Collecting a Network Trace from Hardware and Software
Instrumenting the User’s Application Code
To link network events and console output to concrete lines
of code, and to report device health information, application
code must be instrumented to collect line execution times and
device health. WiFröst instruments a user’s application source
code to automatically collect this information, by running a
custom ANTLR-generated [32] parse tree walker over the
code. The walker initializes serial output at the start of the
program’s setup function. Before every statement in the
program, the walker introduces a Serial.write statement
to report the line that is about to execute. Inside the loop

function, the walker adds code to query a utility library (in
our case, “MemoryFree” Arduino library [2]) for the available
RAM left on the device, and writes the result to the serial port.
Generalizing this instrumentation approach to non-Arduino
platforms is discussed in Limitations.

Instrumenting a Standard Networking Library
The WiFröst interface shows an event whenever a device
makes a request and whenever it receives a response. It also
flags whenever WiFi initialization has failed and detects the
causes of these failures. To collect information for these events
and checks, we instrumented the standard networking library
for Arduino—“WiFi101” [1]. The library was extended to
log all calls to its initialization and request functions, and to
log error codes handled in these functions. Future tools like
WiFröst could apply similar instrumentation to networking
libraries through wrapping or source code modification.

Instrumenting a Maker’s Router
Many confusing problems in a networked application manifest
outside the device where a request originates, like failures due
to weak signal strength and errors on a server. To detect such
problems we introduce an instrumented wireless router; in
our implementation, a Raspberry Pi. The instrumentation con-
tinually logs all incoming requests, server responses, signal
strength (RSSI) with connected devices, router authorization
failures, and the round-trip time of a ping to a well-known
DNS server. While some of this information could be collected
on a device (e.g., HTTP requests and responses), reporting
this information from the router has the added advantage that
it does not slow down a user’s application code, it only intro-
duces a small amount of network latency.

Cross-Device Transaction Detection
In the WiFröst interface, a user can visually trace a network
“transaction” from initiation in the client API code, to handling
in the router and server, to its reception back on the device.
It is not possible to reliably link events into transactions us-
ing event timing alone—devices often make multiple overlap-
ping requests, which can be fulfilled out of order. We further
instrumented the networking library and router to associate
a persistent transaction ID with each event in a transaction.
When a user initiates an HTTP request using the networking
library, the library appends a unique transaction ID to the head-
ers. The router passes this header onto the server. When the
server returns a response, the router automatically associates
the response with the request, tagging the two with the same
transaction ID. The router updates the headers of the response
returned to the device to include this ID.

Putting it Together: Cross-Device Time Synchronization
WiFröst’s capture infrastructure faces a unique challenge:
code-triggered events occur at the resolution of microseconds,
so events on the device and router must be synchronized with
microsecond-level precision to capture the causality of events.
Typical techniques for synchronization like NTP [3], only en-
sure synchronization to a precision of milliseconds, even when
two computers are directly connected over a network link.

To synchronize log data with microseconds-level precision, all
log data from both the device and the router is transmitted over



megabaud-rate serial connections to a single Digilent Digital
Discovery 2 logic analyzer. The logic analyzer is read via
a USB connection to a local workstation and then the data
is written to the WiFröst database. Network packets (e.g.,
HTTP requests and responses) are often kilobytes in size – too
large for real-time processing by the logic analyzer. Therefore,
whenever the router registers a network event, it sends a packet
ID over serial to log the packet’s timing, and then uploads the
packet’s payload asynchronously to the database over HTTP.

For an instrumented web API server, the milliseconds-
resolution synchronization provided by NTP with the device
and router is sufficient since the network delays are much
larger than the clock error.

A Framework for Error Localization and Description
A WiFröst checker is defined by four rules, and can often be
implemented in around 30 lines of code. First, a checker needs
a rule that iterates over all events and returns locations of
events including errors. Second and third, a checker includes
a rule to describe the error, and potential fixes, which can
be parameterized with event and line number data. Fourth, a
checker can define how highlight and zoom to relevant events
when the error is selected from the issues browser.

LIMITATIONS
Hardware Limitations:
Our current implementation of WiFröst only supports the Ar-
duino Zero and its default WiFi library to connect to our
software-defined router in order to get man-in-the-middle ac-
cess to network traffic. However, our ANTLR instrumentation
could easily be modified to process C or C++ code used by
other embedded platforms, so long as the particular chip has a
spare hardware UART to use as a output channel. Likewise,
our on-device networking instrumentation code is only around
200 lines and could be adapted to other libraries where the
read and write primitives can be wrapped or modified.

We rely on a commercial logic analyzer to simultaneously
collect trace information from both the embedded device and
software router in order to precisely synchronize their time
domains. This requires physical connections to both devices,
which limits where devices can be placed during testing.

Software Limitations:
In our current implementation, we only display a single em-
bedded device communicating to a router and then the internet.
IoT device developers are often interested in the flow of infor-
mation from many user devices to a backend service. From
an instrumentation perspective, it is straightforward to instru-
ment and capture instruction streams from multiple devices
simultaneously. However, it remains an open question how
to visualize multiple related traces in an effective manner. Al-
though it wouldn’t be difficult to allow a user to select a single
pair of devices of interest to display among several captured
in the current UI, this is still point to point and wouldn’t allow
the user to easily see how groups of devices were interacting.

WiFröst currently only focuses on HTTP(S) transactions to
ports 80 and 443 and REST interfaces. While this captures a
great number of current IoT use cases, two logical next steps

would be to add support for raw TCP/UDP socket commu-
nication and for additional protocols like MQTT. While the
network capture and protocol parsing components would re-
quire changes, the core visualization approach conceptually
supports these protocols.

Our instrumentation impacts runtime performance, which
could negatively impact the behavior of time-critical code.
We have observed a maximum 3x slowdown on the Arduino
Zero for line execution logging. The slowdown is dominated
by the imbalance between the rate that the processor fills up
the UART output buffer and the rate it is emptied (2MBaud).

Trade-offs in Checks:
Our suite of general-purpose checks rely on relatively simple
heuristics. Most APIs will respond with a 400 class error in the
case of an client error, but some APIs will respond with a 200
OK regardless of call success. We generalize by looking for
the keyword "error" in the JSON response, but this does not
cover all cases for all APIs. It is possible for users to author
their own more precise application or API-specific checks by
writing code using our framework. However, we expect a
GUI-based checker authoring system would enhance usability.

Since WiFröst tags and visualizes communications across the
network, the visualization is more sparse when communication
fails to be sent at all. However, so long as any code is running
on the device, the "Device" pane of the UI will be populated.
In this way a user can observe their program’s flow and get
insight into why certain code paths might not have been run.

CONCLUSIONS AND FUTURE WORK
A structured set of debugging tasks could provide insight into
UI usage patterns and help us assess the overall effectiveness
in helping programmers successful debug their applications. A
more open-ended development task or workshop could guide
the design of features beyond affordances for localizing errors.

In some cases, the end user may be developing a server back-
end in conjunction with the embedded device. Instrumenting
back-end server code in a similar way to how we currently
instrument embedded software could yield more insight into
failures that occur as a result of server-side problems. This
approach would result in an even higher amount of information
density in the user interface and likely require exploring new
visualization and filtering techniques to enhance clarity.

Our system spans from user embedded code to communica-
tion with a networked server. Incorporating the additional
domain of physical measurements alongside user code (as in
Bifröst [28]) would let users perform root cause analysis of
errors manifesting at the highest levels of abstraction, e.g., a
server database value entry, down to the lowest level of behav-
ior, e.g., measurement noise in a voltage on a pin. Such a tool
would completely bridge the gap between physical electronics
and web applications, dramatically changing the development
and debugging workflow of Makers, students, and professional
developers for the better.

ACKNOWLEDGEMENTS
This work was supported in part by NSF awards CNS 1505728
and IIS 1149799.



REFERENCES
1. Arduino – wifi.

https://www.arduino.cc/en/Reference/WiFi. Accessed
04-04-2018.

2. Available memory – arduino playground.
https://playground.arduino.cc/Code/AvailableMemory.
Accessed 04-04-2018.

3. Ntp: The network time protocol.
http://www.ntp.org/index.html. Accessed 04-04-2018.

4. Becker, R. A., and Cleveland, W. S. Brushing scatterplots.
Technometrics 29, 2 (1987), 127–142.

5. Bederson, B. B., Meyer, J., and Good, L. Jazz: an
extensible zoomable user interface graphics toolkit in
java. In Proceedings of the 13th annual ACM symposium
on User interface software and technology, ACM (2000),
171–180.

6. Booth, T., Stumpf, S., Bird, J., and Jones, S. Crossed
wires: Investigating the problems of end-user developers
in a physical computing task. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems, ACM (2016), 3485–3497.

7. Burg, B., Bailey, R., Ko, A. J., and Ernst, M. D.
Interactive record/replay for web application debugging.
In Proceedings of the 26th annual ACM symposium on
User interface software and technology, ACM (2013),
473–484.

8. Chanda, A., Cox, A. L., and Zwaenepoel, W. Whodunit:
Transactional profiling for multi-tier applications. In
ACM SIGOPS Operating Systems Review, vol. 41, ACM
(2007), 17–30.

9. Chang, K. S.-P., and Myers, B. A. Gneiss: spreadsheet
programming using structured web service data. Journal
of Visual Languages & Computing, http://www.
sciencedirect.
com/science/article/pii/S1045926X16300994 (2016).

10. Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., and
Brewer, E. Pinpoint: Problem determination in large,
dynamic internet services. In Dependable Systems and
Networks, 2002. DSN 2002. Proceedings. International
Conference on, IEEE (2002), 595–604.

11. Chiang, H., Hong, J., Kiningham, K., Riliskis, L., Levis,
P., and Horowitz, M. Tethys–an energy harvesting
networked water flow sensor. In Proceedings of the Third
International Conference on Internet-of-Things Design
and Implementation, ACM (2018).

12. Drew, D., Newcomb, J. L., McGrath, W., Maksimovic, F.,
Mellis, D., and Hartmann, B. The toastboard: Ubiquitous
instrumentation and automated checking of breadboarded
circuits. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology, ACM (2016),
677–686.

13. Fonseca, R., Dutta, P., Levis, P., and Stoica, I. Quanto:
Tracking energy in networked embedded systems. In
OSDI, vol. 8 (2008), 323–338.

14. Fonseca, R., Porter, G., Katz, R. H., Shenker, S., and
Stoica, I. X-trace: A pervasive network tracing
framework. In Proceedings of the 4th USENIX
conference on Networked systems design &
implementation, USENIX Association (2007), 20–20.

15. Gay, D., Levis, P., Von Behren, R., Welsh, M., Brewer, E.,
and Culler, D. The nesc language: A holistic approach to
networked embedded systems. Acm Sigplan Notices 49, 4
(2014), 41–51.

16. Gugerty, L., and Olson, G. Debugging by skilled and
novice programmers. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’86, ACM (New York, NY, USA, 1986), 171–174.

17. Handigol, N., Heller, B., Jeyakumar, V., Maziéres, D.,
and McKeown, N. Where is the debugger for my
software-defined network? In Proceedings of the first
workshop on Hot topics in software defined networks,
ACM (2012), 55–60.

18. Handigol, N., Heller, B., Jeyakumar, V., Mazières, D.,
and McKeown, N. I know what your packet did last hop:
Using packet histories to troubleshoot networks. In NSDI,
vol. 14 (2014), 71–85.

19. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A., and Gee, J. Reflective
physical prototyping through integrated design, test, and
analysis. In Proceedings of the 19th annual ACM
symposium on User interface software and technology,
ACM (2006), 299–308.

20. Hibschman, J., and Zhang, H. Unravel: Rapid web
application reverse engineering via interaction recording,
source tracing, and library detection. In Proceedings of
the 28th Annual ACM Symposium on User Interface
Software & Technology, ACM (2015), 270–279.

21. Industries, A. Adafruit io. https://io.adafruit.com/, 2018.

22. Kato, J., McDirmid, S., and Cao, X. Dejavu: integrated
support for developing interactive camera-based
programs. In Proceedings of the 25th annual ACM
symposium on User interface software and technology,
ACM (2012), 189–196.

23. Kato, Y. Splish: a visual programming environment for
arduino to accelerate physical computing experiences. In
Creating Connecting and Collaborating through
Computing (C5), 2010 Eighth International Conference
on, IEEE (2010), 3–10.

24. Ko, A. J., and Myers, B. A. Debugging reinvented:
Asking and answering why and why not questions about
program behavior. In Proceedings of the 30th
International Conference on Software Engineering, ICSE
’08, ACM (New York, NY, USA, 2008), 301–310.

25. Ko, A. J., and Myers, B. A. Finding causes of program
output with the java whyline. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, ACM (2009), 1569–1578.



26. Lieber, T., Brandt, J. R., and Miller, R. C. Addressing
misconceptions about code with always-on programming
visualizations. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems,
ACM (2014), 2481–2490.

27. Marquardt, N., Gross, T., Carpendale, S., and Greenberg,
S. Revealing the invisible: visualizing the location and
event flow of distributed physical devices. In Proceedings
of the fourth international conference on Tangible,
embedded, and embodied interaction, ACM (2010),
41–48.

28. McGrath, W., Drew, D., Warner, J., Kazemitabaar, M.,
Karchemsky, M., Mellis, D., and Hartmann, B. Bifröst:
Visualizing and checking behavior of embedded systems
across hardware and software. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software and
Technology, ACM (2017), 299–310.

29. McGrath, W., Etemadi, M., Roy, S., and Hartmann, B.
Fabryq: Using phones as gateways to prototype internet
of things applications using web scripting. In Proceedings
of the 7th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, ACM (2015), 164–173.

30. Mellis, D., Banzi, M., Cuartielles, D., and Igoe, T.
Arduino: An open electronic prototyping platform. In
Proc. CHI, vol. 2007 (2007).

31. Mellis, D. A., Buechley, L., Resnick, M., and Hartmann,
B. Engaging amateurs in the design, fabrication, and
assembly of electronic devices. In Proceedings of the
2016 ACM Conference on Designing Interactive Systems,
ACM (2016), 1270–1281.

32. Parr, T. J., and Quong, R. W. Antlr: A predicated-LL(k)
parser generator. Software - Practice and Experience 25,
7 (1995), 789–810.

33. Particle. Particle cloud. https://www.particle.io/, 2018.

34. Reynolds, P., Killian, C. E., Wiener, J. L., Mogul, J. C.,
Shah, M. A., and Vahdat, A. Pip: Detecting the
unexpected in distributed systems. In NSDI, vol. 6 (2006),
9–9.

35. Sambasivan, R. R., Zheng, A. X., De Rosa, M., Krevat,
E., Whitman, S., Stroucken, M., Wang, W., Xu, L., and
Ganger, G. R. Diagnosing performance changes by
comparing request flows. In NSDI, vol. 5 (2011), 1–1.

36. Sigelman, B. H., Barroso, L. A., Burrows, M.,
Stephenson, P., Plakal, M., Beaver, D., Jaspan, S., and
Shanbhag, C. Dapper, a large-scale distributed systems
tracing infrastructure. Tech. rep., Technical report,
Google, Inc, 2010.

37. Strasnick, E., Agrawala, M., and Follmer, S. Scanalog:
Interactive design and debugging of analog circuits with
programmable hardware. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software and
Technology, ACM (2017), 321–330.

38. Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A.,
et al. Ofrewind: Enabling record and replay
troubleshooting for networks. In USENIX Annual
Technical Conference (2011), 15–17.

39. Zimmermann, H. Osi reference model–the iso model of
architecture for open systems interconnection. IEEE
Transactions on communications 28, 4 (1980), 425–432.


	Introduction
	Related Work
	General Debugging Techniques and Patterns
	Embedded Systems and Electronics Debugging
	Network and Distributed System Debugging

	A Gateway to WiFröst
	Debugging with WiFröst
	Holistic Debugging Assistance
	Visualizing Event and Transaction Context
	At-A-Glance Health Indications
	Transaction Grouping for Pattern Recognition

	Pre-emptive Fault Localization

	Implementation
	Collecting a Network Trace from Hardware and Software
	Instrumenting the User's Application Code
	Instrumenting a Standard Networking Library
	Instrumenting a Maker's Router
	Cross-Device Transaction Detection

	Putting it Together: Cross-Device Time Synchronization
	A Framework for Error Localization and Description

	Limitations
	Conclusions and Future Work
	Acknowledgements
	References 

