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Low-Level Control of a Quadrotor With Deep
Model-Based Reinforcement Learning

Nathan O. Lambert , Daniel S. Drew , Joseph Yaconelli, Sergey Levine,
Roberto Calandra , and Kristofer S. J. Pister

Abstract—Designing effective low-level robot controllers of-
ten entail platform-specific implementations that require manual
heuristic parameter tuning, significant system knowledge, or long
design times. With the rising number of robotic and mechatronic
systems deployed across areas ranging from industrial automation
to intelligent toys, the need for a general approach to generat-
ing low-level controllers is increasing. To address the challenge
of rapidly generating low-level controllers, we argue for using
model-based reinforcement learning (MBRL) trained on relatively
small amounts of automatically generated (i.e., without system
simulation) data. In this letter, we explore the capabilities of MBRL
on a Crazyflie centimeter-scale quadrotor with rapid dynamics
to predict and control at ≤50 Hz. To our knowledge, this is the
first use of MBRL for controlled hover of a quadrotor using only
on-board sensors, direct motor input signals, and no initial dy-
namics knowledge. Our controller leverages rapid simulation of a
neural network forward dynamics model on a graphic processing
unit enabled base station, which then transmits the best current
action to the quadrotor firmware via radio. In our experiments,
the quadrotor achieved hovering capability of up to 6 s with 3 min
of experimental training data.

Index Terms—Deep learning in robotics and automation, aerial
systems: mechanics and control.

I. INTRODUCTION

THE ideal method for generating a robot controller would
be extremely data efficient, free of requirements on domain

knowledge, and safe to run. Current strategies to derive low-level
controllers are effective across many platforms, but system
identification often requires substantial setup and experiment
time while PID tuning requires some domain knowledge and
still results in dangerous roll-outs. With the goal to reduce
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Fig. 1. The model predictive control loop used to stabilize the Crazyflie. Using
deep model-based reinforcement learning, the quadrotor reaches stable hovering
with only 10,000 trained datapoints – equivalent to 3 minutes of flight.

reliance on expert-based controller design, in this letter we
investigate the question: Is it possible to autonomously learn
competitive low-level controllers for a robot, without simulation
or demonstration, in a limited amount of time?

To answer this question, we turn to model-based reinforce-
ment learning (MBRL) – a compelling approach to synthesize
controllers even for systems without analytic dynamics models
and with high cost per experiment [1]. MBRL has been shown
to operate in a data-efficient manner to control robotic systems
by iteratively learning a dynamics model and subsequently
leveraging it to design controllers [2]. Our contribution builds
on simulated results of MBRL [3]. We employ the quadrotor as
a testing platform to broadly investigate controller generation on
a highly nonlinear, challenging system, not to directly compare
performance versus existing controllers. This letter is the first
demonstration of controlling a quadrotor with direct motor
assignments sent from a MBRL derived controller learning
only via experience. Our work differs from recent progress in
MBRL with quadrotors by exclusively using experimental data
and focusing on low level control, while related applications
of learning with quadrotors employ low-level control gener-
ated in simulation [4] or use a dynamics model learned via
experience to command on-board controllers [5]. Our MBRL
solution, outlined in Figure 1, employs neural networks (NN)
to learn a forwards dynamics model coupled with a ‘random
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shooter’ MPC, which can be efficiently parallelized on a graphic
processing unit (GPU) to execute low-level, real-time control.

Using MBRL, we demonstrate controlled hover of a Crazyflie
via on-board sensor measurements and application of pulse
width modulation (PWM) motor voltage signals. Our method
for quickly learning controllers from real-world data is not yet
an alternative to traditional controllers such as PID, but it opens
important avenues of research. The general mapping of the for-
ward dynamics model, in theory, allows the model to be used for
control tasks beyond attitude control. Additionally, we highlight
the capability of leveraging the predictive models learned on
extremely little data for working at frequencies ≤50 Hz, while
a hand tuned PID controller at this frequency failed to hover
the Crazyflie. With the benefits outlined, the current MBRL
approach has limitations in performance and applicability to
our goal of use with other robots. The performance in this letter
has notable room for improvement by mitigating drift. Future
applications are limited by our approach’s requirement of a
high power external GPU – a prohibitively large computational
footprint when compared to standard low-level controllers – and
by the method’s potential for collisions when learning.

The resulting system achieves repeated stable hover of up to
6 seconds, with failures due to drift of unobserved states, within
3 minutes of fully-autonomous training data. These results
demonstrate the ability of MBRL to control robotic systems in
the absence of a priori knowledge of dynamics, pre-configured
internal controllers for stability or actuator response smoothing,
and expert demonstration.

II. RELATED WORK

A. Attitude and Hover Control of Quadrotors

Classical controllers (e.g., PID, LQR, iLQR) in conjunction
with analytic models for the rigid body dynamics of a quadrotor
are often sufficient to control vehicle attitude [6]. In addition,
linearized models are sufficient to simultaneously control for
global trajectory attitude setpoints using well-tuned nested PID
controllers [7]. Standard control approaches show impressive
acrobatic performance with quadrotors, but we note that we
are not interested in comparing our approach to finely-tuned
performance; the goal of using MBRL in this context is to
highlight a solution that automatically generates a functional
controller in less or equal time than initial PID hand-tuning,
with no foundation of dynamics knowledge.

Research focusing on developing novel low-level attitude
controllers shows functionality in extreme nonlinear cases, such
as for quadrotors with a missing propeller [8], with multiple
damaged propellers [9], or with the capability to dynamically
tilt its propellers [10]. Optimal control schemes have demon-
strated results on standard quadrotors with extreme precision
and robustness [11].

Our work differs by specifically demonstrating the possibility
of attitude control via real-time external MPC. Unlike other
work on real-time MPC for quadrotors which focus on trajectory
control [12], [13], ours uses a dynamics model derived fully
from in-flight data that takes motors signals as direct inputs.
Effectively, our model encompasses only the actual dynamics
of the system, while other implementations learn the dynamics

conditioned on previously existing internal controllers. The gen-
eral nature of our model from sensors to actuators demonstrates
the potential for use on robots with no previous controller — we
only use the quadrotor as the basis for comparison and do not
expect it to be the limits of the MBRL system’s functionality.

B. Learning for Quadrotors

Although learning-based approaches have been widely ap-
plied for trajectory control of quadrotors, implementations typ-
ically rely on sending controller outputs as setpoints to stable
on-board attitude and thrust controllers. Iterative learning con-
trol (ILC) approaches [14], [15] have demonstrated robust con-
trol of quadrotor flight trajectories but require these on-board
controllers for attitude setpoints. Learning-based model predic-
tive control implementations, which successfully track trajecto-
ries, also wrap their control around on-board attitude controllers
by directly sending Euler angle or thrust commands [16], [17].
Gaussian process-based automatic tuning of position controller
gains has been demonstrated [18], but only in parallel with
on-board controllers tuned separately.

Model-free reinforcement learning has been shown to gen-
erate control policies for quadrotors that out-performs linear
MPC [4]. Although similarly motivated by a desire to generate a
control policy acting directly on actuator inputs, the work used
an external vision system for state error correction, operated
with an internal motor speed controller enabled (i.e., thrusts
were commanded and not motor voltages), and generated a large
fraction of its data in simulation.

Researchers of system identification for quadrotors also apply
machine learning techniques. Bansal et al. used NN models of
the Crazyflie’s dynamics to plan trajectories [5]. Our imple-
mentation differs by directly predicting change in attitude with
on-board IMU measurements and motor voltages, rather than
predicting with global, motion-capture state measurements and
thrust targets for the internal PIDs. Using Bayesian Optimization
to learn a linearized quadrotor dynamics model demonstrated
capabilities for tuning of an optimal control scheme [19]. While
this approach is data-efficient and is shown to outperform ana-
lytic models, the model learned is task-dependent. Our MBRL
approach is task agnostic by only requiring a change in objective
function and no new dynamics data for a new function.

C. Model-Based Reinforcement Learning

Functionality of MBRL is evident in simulation for multi-
ple tasks in low data regimes, including quadrupeds [20] and
manipulation tasks [21]. Low-level MBRL control (i.e., with
direct motor input signals) of an RC car has been demonstrated
experimentally, but the system is of lower dimensionality and
has static stability [22]. Relatively low-level control (i.e., mostly
thrust commands only passed through an internal governor
before conversion to motor signals) of an autonomous helicopter
has been demonstrated, but required a ground-based vision
system for error correction in state estimates as well as expert
demonstration for model training [22].

Properly optimized NNs trained on experimental data
show test error below common analytic dynamics models for
flying vehicles, but the models did not include direct actuator
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signals and did not include experimental validation through
controller implementation [23]. A model predictive path
integral (MPPI) controller using a learned NN demonstrated
data-efficient trajectory control of a quadrotor, but results
were only shown in simulation and required the network to be
initialized with 30 minutes of demonstration data with on-board
controllers [2].

MBRL with trajectory sampling for control outperforms, in
terms of samples needed for convergence, the asymptotic perfor-
mance of recent model free algorithms in low dimensional tasks
[3]. Our work builds on strategies presented, with most influence
derived from “probabilistic” NNs, to demonstrate functionality
in an experimental setting — i.e., in the presence of real-world
higher order effects, variability, and time constraints.

NN-based dynamics models with MPC have functioned for
experimental control of an under-actuated hexapod [24]. The
hexapod platform does not have the same requirements on
frequency or control error due to its static stability, and incor-
porates a GPS unit for relatively low-noise state measurements.
Our work has a similar architecture, but has improvements in
the network model and model predictive controller to allow
substantially higher control frequencies with noisy state data.
By demonstrating functionality without global positioning data,
the procedure can be extended to more robot platforms where
only internal state and actuator commands are available to create
a dynamics model and control policy.

III. EXPERIMENTAL SETUP

In this letter, we use as experimental hardware platform the
open-source Crazyflie 2.0 quadrotor [25]. The Crazyflie is 27 g
and 9 cm2, so the rapid system dynamics create a need for a
robust controller; by default, the internal PID controller used for
attitude control runs at 500 Hz, with Euler angle state estimation
updates at 1 kHz. This section specifies the ROS base-station and
the firmware modifications required for external stability control
of the Crazyflie.

All components we used are based on publicly available
and open source projects. We used the Crazyflie ROS interface
supported here: https://github.com/whoenig/crazyflie_ros [26].
This interface allows for easy modification of the radio com-
munication and employment of the learning framework. Our
ROS structure is simple, with a Crazyflie subscribing to PWM
values generated by a controller node, which processes radio
packets sent from the quadrotor in order to pass state variables
to the model predictive controller (as shown in Figure 2). The
Crazyradio PA USB radio is used to send commands from the
ROS server; software settings in the included client increase
the maximum data transmission bitrate up to 2 Mbps and a
Crazyflie firmware modification improves the maximum traffic
rate from 100 Hz to 400 Hz.

In packaged radio transmissions from the ROS server we
define actions directly as the pulse-width modulation (PWM)
signals sent to the motors. To assign these PWM values directly
to the motors we bypass the controller updates in the standard
Crazyflie firmware by changing the motor power distribution
whenever a CRTP Commander packet is received (see Figure 2).
The Crazyflie ROS package sends empty ping packets to the

Fig. 2. The ROS computer passes control signals and state data between the
MPC node and the Crazyflie ROS server. The Crazyflie ROS server packages
Tx PWM values to send and unpacks Rx compressed log data from the robot.

Crazyflie to ask for logging data in the returning acknowl-
edgment packet; without decreasing the logging payload and
rate we could not simultaneously transmit PWM commands at
the desired frequency due to radio communication constraints.
We created a new internal logging block of compressed IMU
data and Euler angle measurements to decrease the required
bitrate for logging state information, trading state measurement
precision for update frequency. Action commands and logged
state data are communicated asynchronously; the ROS server
control loop has a frequency set by the ROS rate command, while
state data is logged based on a separate ROS topic frequency. To
verify control frequency and reconstruct state action pairs during
autonomous rollouts we use a round-trip packet ID system.

IV. LEARNING FORWARD DYNAMICS

The foundation of a controller in MBRL is a reliable forward
dynamics model for predictions. In this letter, we refer to the
current state and action as st and at, which evolve according
to the dynamics f(st, at). Generating a dynamics model for the
robot often consists of training a NN to fit a parametric function
fθ to predict the next state of the robot as a discrete change
in state st+1 = st + fθ(st, at). In training, using a probabilistic
loss function with a penalty term on the variance of estimates, as
shown in Equation (1), better clusters predictions for more stable
predictions across multiple time-steps [3]. The probabilistic
loss fits a Gaussian distribution to each output of the network,
represented in total by a mean vector μθ and a covariance
matrix Σθ

l =

N∑

n=1

[μθ(sn, an)− sn+1]
TΣ−1

θ (sn, an)[μθ(sn, an)− sn+1]

+ log det Σθ(sn, an) . (1)

The probabilistic loss function assists model convergence and
the variance penalty helps maintain stable predictions on longer
time horizons. Our networks implemented in Pytorch train
with the Adam optimizer [27] for 60 epochs with a learning rate
of .0005 and a batch size of 32. Figure 3 summarizes the network
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Fig. 3. The NN dynamics model predicts the mean and variance of the change
in state given the past 4 state-action pairs. We use 2 hidden layers of width 250
neurons.

design. All layers except for the output layer use the Swish
activation function [28] with parameter β = 1. The network
structure was cross validated offline for prediction accuracy
verses potential control frequency. Initial validation of training
parameters was done on early experiments, and the final values
are held constant for each rollout in the experiments reported in
Section VI. The validation set is a random subset of measured
(st, at, st+1) tuples in the pruned data.

Additional dynamics model accuracy could be gained with
systematic model verification between rollouts, but experimen-
tal variation in the current setup would limit empirical insight and
a lower model loss does not guarantee improved flight time. Our
initial experiments indicate improved flight performance with
forward dynamics models minimizing the mean and variance
of state predictions versus models minimizing mean squared
prediction error, but more experiments are needed to state clear
relationships between more model parameters and flight perfor-
mance.

Training a probabilistic NN to approximate the dynamics
model requires pruning of logged data (e.g. dropped packets)
and scaling of variables to assist model convergence. Our state st
is the vector of Euler angles (yaw, pitch, and roll), linear accel-
erations, and angular accelerations, reading

st =
[
ω̇x, ω̇y, ω̇z, φ, θ, ψ, ẍ, ÿ, z̈

]T
. (2)

The Euler angles are from the an internal complementary
filter, while the linear and angular accelerations are measured
directly from the on-board MPU-9250 9-axis IMU. In practice,
for predicting across longer time horizons, modeling accelera-
tion values as a global next state rather than a change in state
increased the length of time horizon in composed predictions
before the models diverged. While the change in Euler angle
predictions are stable, the change in raw accelerations vary
widely with sensor noise and cause non-physical dynamics
predictions, so all the linear and angular accelerations are trained
to fit the global next state.

We combine the state data with the four PWM values, at =
[m1,m2,m3,m4]

T , to get the system information at time t.
The NNs are cross-validated to confirm using all state data
(i.e., including the relatively noisy raw measurements) improves
prediction accuracy in the change in state.

While the dynamics for a quadrotor are often represented as
a linear system, for a Micro Air Vehicle (MAV) at high control
frequencies motor step response and thrust asymmetry heavily
impact the change in state, resulting in a heavily nonlinear
dynamics model. The step response of a Crazyflie motor RPM

Fig. 4. Predicted states for N = 50 candidate actions with the chosen “best
action” highlighted in red. The predicted state evolution is expected to diverge
from the ground truth for future t because actions are re-planned at every step.

from PWM 0 to max or from max to 0 is on the order of 250 ms, so
our update time-step of 20 ms is short enough for motor spin-up
to contribute to learned dynamics. To account for spin-up, we
append past system information to the current state and PWMs
to generate an input into the NN model that includes past time.
From the exponential step response and with a bounded possible
PWM value within peq ± 5000, the motors need approximately
25 ms to reach the desired rotor speed; when operating at 50 Hz,
the time step between updates is 20 ms, leading us to an appended
states and PWMs history of length 4. This state action history
length was validated as having the lowest test error on our
data-set (lengths 1 to 10 evaluated). This yields the final input
of length 52 to our NN, ξ, with states and actions combined to
ξt =

[
st st−1 st−2 st−3 at at−1 at−2 at−3

]T
.

V. LOW LEVEL MODEL-BASED CONTROL

This section explains how we incorporate our learned forward
dynamics model into a functional controller. The dynamics
model is used for control by predicting the state evolution given a
certain action, and the MPC provides a framework for evaluating
many action candidates simultaneously. We employ a ‘random
shooter’ MPC, where a set of N randomly generated actions
are simulated over a time horizon T . The best action is decided
by a user designed objective function that takes in the simulated
trajectories X̂(a, st) and returns a best action,a∗, as visualized in
Figure 4. The objective function minimizes the receding horizon
cost of each state from the end of the prediction window to the
current measurement.

The candidate actions, {ai = (ai,1, ai,2, ai,3, ai,4)}Ni=1, are
4-tuples of motor PWM values centered around the stable hover-
point for the Crazyflie. The candidate actions are constant across
the prediction time horizon T . For a single sample ai, each
ai,j is chosen from a uniform random variable on the interval
[peq,j − σ, peq,j + σ], wherepeq,j is the equilibrium PWM value
for motor j. The range of the uniform distribution is controlled
by the tuned parameter σ; this has the effect of restricting the
variety of actions the Crazyflie can take. For the given range of
PWM values for each motor, [peq − σ, peq + σ], we discretize
the candidate PWM values to a step size of 256 to match the
future compression into a radio packet. This discretization of
available action choices increases the coverage of the candidate
action space. The compression of PWM resolution, while helpful
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for sampling and communication, represents an uncharacterized
detriment to performance.

Our investigation focuses on controlled hovering, but other
tasks could be commanded with a simple change to the ob-
jective function. The objective we designed for stability seeks
to minimize pitch and roll, while adding additional cost terms
to Euler angle rates. In the cost function, λ effects the ratio
between proportional and derivative gains. Adding cost terms to
predicted accelerations did not improve performance because of
the variance of the predictions.

a∗ = argmin
a

T∑

t=1

λ(ψ2
t + θ2t ) + ψ̇2

t + θ̇2t + φ̇2t . (3)

Our MPC operates on a time horizon T = 12 to leverage the
predictive power of our model. Higher control frequencies can
run at a cost of prediction horizon, such as T = 9 at 75 Hz or
T = 6 at 100 Hz. The computational cost is proportional to the
product of model size, number of actions (N ), and time horizon
(T ). At high frequencies the time spanned by the dynamics
model predictions shrinks because of a smaller dynamics step in
prediction and by having less computation for longer T , limiting
performance. At 50 Hz, a time horizon of 12 corresponds to a
prediction of 240 ms into the future. Tuning the parameters of
this methodology corresponds to changes in the likelihood of
taking the best action, rather than modifying actuator responses,
and therefore its effect on performance is less sensitive than
changes to PID or standard controller parameters. At 50 Hz, the
predictive power is strong, but the relatively low control frequen-
cies increases susceptibility to disturbances in between control
updates. A system running with an Nvidia Titan Xp attains a
maximum control frequency of 230 Hz withN = 5000, T = 1.
For testing we use locked frequencies of 25 Hz and 50 Hz at
N = 5000, T = 12.

VI. EXPERIMENTAL EVALUATION

We now describe the setting used in our experiments, the
learning process of the system, and the performance summary
of the control algorithm. Videos of the flying quadrotor, and
full code for controlling the Crazyflie and reproducing the
experiments, are available online at https://sites.google.com/
berkeley.edu/mbrl-quadrotor/

A. Experimental Setting

The performance of our controller is measured by the av-
erage flight length over each roll-out. Failure is often due to
drift induced collisions, or, as in many earlier roll-outs, when
flights reach a pitch or roll angle over 40◦. In both cases, an
emergency stop command is sent to the motors to minimize
damage. Additionally, the simple on-board state estimator shows
heavy inconsistencies on the Euler angles following a rapid
throttle ramping, which is a potential limiting factor on the
length of controlled flight. Notably, a quadrotor with internal
PIDs enabled will still fail regularly due to drift on the same
time frame as our controller; it is only with external inputs that
the internal controllers will obtain substantially longer flights.

Fig. 5. Mean and standard deviation of the 10 flights during each rollout
learning at 25 Hz and 50 Hz. The 50 Hz shows a slight edge on final performance,
but a much quicker learning ability per flight by having more action changes
during control.

The drift showcases the challenge of using attitude controllers
to mitigate an offset in velocity.

B. Learning Process

The learning process follows the RL framework of collecting
data and iteratively updating the policy. We trained an initial
model f0 on 124 and 394 points of dynamics data at 25 Hz
and 50 Hz, respectively, from the Crazyflie being flown by a
random action controller. Starting with this initial model as the
MPC plant, the Crazyflie undertakes a series of autonomous
flights from the ground with a 250 ms ramp up, open-loop takeoff
followed by on-policy control while logging data via radio. Each
roll-out is a series of 10 flights, which causes large variances
in flight time. The initial roll-outs have less control authority
and inherently explore more extreme attitude orientations (often
during crashes), which is valuable to future iterations that wish
to recover from higher pitch and/or roll. The random and first
three controlled roll-outs at 50 Hz are plotted in Figure 6 to show
the rapid improvement of performance with little training data.

The full learning curves are shown in Figure 5. At both 25 Hz
and 50 Hz the rate of flight improvement reaches its maximum
once there is 1,000 trainable points for the dynamics model,
which takes longer to collect at the lower control frequency. The
improvement is after roll-out 1 at 50 Hz and roll-out 5 at 25 Hz.
The longest individual flights at both control frequencies is over
5 s. The final models at 25 Hz and 50 Hz are trained on 2,608 and
9,655 points respectively, but peak performance is earlier due to
dynamics model convergence and hardware lifetime limitations.

C. Performance Summary

This controller demonstrates the ability to hover, following a
“clean” open-loop takeoff, for multiple seconds (an example is
shown in Figure 8). At both 25 Hz and 50 Hz, once reaching
maximum performance in the 12 roll-outs, about 30% of flights
fail to drift. The failures due to drift indicate the full potential of
the MBRL solution to low-level quadrotor control. An example
of a test flight segment is shown in Figure 7, where the control
response to pitch and roll error is visible.

The basis of comparison, typical quadrotor controllers,
achieve better performance, but with higher control fre-
quencies and engineering design iterations leveraging sys-
tem dynamics knowledge. With the continued improvement of
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Fig. 6. The pitch over time for each flight in the first four roll-outs of learning at 50 Hz, showing the rapid increase in control ability on limited data. The random
and first controlled roll-out show little ability, but roll-out 3 is already flying for > 2 seconds.

Fig. 7. The performance of the 50 Hz controller. (Above) The controlled PWM
values over time, which visibly change in response to angle oscillations. (Below)
Pitch and roll.

computational power, the performance of this method should be
re-characterized as potential control frequencies approach that
of PID controllers. Beyond comparison to PID controllers with
low computational footprints, the results warrant exploration of
MBRL for new dynamical systems with or when varying goals
need to be built into low level control. In less than 10 minutes
of clock time, and only 3 minutes of training data, we present
comparable, but limited, performance that is encouraging for
future abilities to match and surpass basic controllers. Moving
the balance of this work further towards domain specific control
would likely improve performance, but the broad potential for
applications to more and different robotic platforms compels
exciting future use of MBRL.

VII. DISCUSSION AND LIMITATIONS

The system has multiple factors contributing to short length
and high variance of flights. First, the PWM equilibrium values
of the motors shift by over 10% following a collision, causing the
true dynamics model to shift over time. This problem is partially
mitigated by replacing the components of the Crazyflie, but any
change of hardware causes dynamics model mismatch and the
challenge persists. Additionally, the internal state estimator does
not track extreme changes in Euler angles accurately. We believe
that overcoming the system-level and dynamical limitations of
controlling the Crazyflie in this manner showcases the expres-
sive power of MBRL.

Improvements to the peak performance will come by iden-
tifying causes of the performance plateau. Elements to investi-
gate include the data-limited slow down in improvement of the
dynamics model accuracy, the different collected data distribu-
tions at each roll-out, the stochasticity of NN training, and the
stochasticity at running time with MPC.

Beyond improving performance, computational burden and
safety hinder the applicability of MBRL with MPC to more
systems. The current method requires a GPU-enabled base-
station, but the computational efficiency could be improved with
intelligent action sampling methods or by combining model free
techniques, such as learning a deterministic action policy based
on the learned dynamics model. We are exploring methods to
generate NN control policies, such as an imitative-MPC network
or a model-free variant, on the dynamics model that could reduce
computation by over 1000x by only evaluating a NN once per
state measurement. In order to enhance safety, we are interested
in defining safety constraints within the model predictive con-
troller, rather than just a safety kill-switch in firmware, opening
the door to fully autonomous learned control from start to
finish.

VIII. CONCLUSIONS AND FUTURE WORK

This work is an exploration of the capabilities of model-based
reinforcement learning for low-level control of an a priori un-
known dynamic system. The results, with the added challenges
of the static instability and fast dynamics of the Crazyflie,
show the capabilities and future potential of MBRL. We detail
the firmware modifications, system design, and model learning
considerations required to enable the use of a MBRL-based
MPC system for quadrotor control over radio. We removed all
robot-specific transforms and higher level commands to only
design the controller on top of a learned dynamics model to
accomplish a simple task. The controller shows the capability
to hover for multiple seconds at a time with less than 3 minutes
of collected data – approximately half of the full battery life
flight time of a Crazyflie. With learned flight in only minutes
of testing, this brand of system-agnostic MBRL is an exciting
solution not only due to its generalizability, but also due to its
learning speed.
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Fig. 8. A full flight of Euler angle state data with frames of the corresponding video. This flight would have continued longer if not for drifting into the wall. The
relation between physical orientation and pitch and roll is visible in the frames. The full video is online on the accompanying website.

In parallel with addressing the limitations outlined in Sec-
tion VII, the quadrotor results warrant investigation into low
level control of other robots. The emergent area of microrobotics
combines the issues of under-characterized dynamics, weak or
non-existent controllers, “fast” dynamics and therefore instabil-
ities, and high cost-to-test [29], [30], so it is a strong candidate
for MBRL experiments.
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